

UNIT –II

Course Code: 18EE0223

CONTROLLABILITY, OBSERVABILITY

R18

$$\dot{x} = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} x + \begin{bmatrix} 11 \\ 1 \\ -14 \end{bmatrix} u; Y = \begin{bmatrix} -3 & -5 & -2 \end{bmatrix} x.$$
 Find the canonical format representation

format representation.

Course Code: 18EE0223

10 Write the effect of state feedback on controllability and observability.

[L1][CO2] [10M]

UNIT –III STATE FEEDBACK CONTROLLERS ANDOBSERVERS

 Define state observer? What is the need for state observer? Define full order & reduced order observer. What is the necessary condition to be satisfied for design of state 	[L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3]	[2M] [2M] [2M] [2M] [2M]
Explain the design of pole placement controller using state feedback. Consider a linear system described by the transfer function $\frac{Y(s)}{U(s)} =$	[L1][CO3] [L1][CO3]	[10M] [10M]
$\frac{10}{s(s+1)(s+2)}$. Design a feedback controller with a state feedback, so that the closed loop poles are placed at -2, -1± j1. A single input system is described by the following state equation	[L1][CO3]	[10 M]
$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} U. \text{ Design a state feedback controller} $ which will give closed loop poles at $-1+i2$ 6		
0 11 ,	[L1][CO3]	[10M]
		[10M]
*		
The state model is given by	[L2][CO3]	[10M]
$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} U; Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$ Convert the state model to controllable phase variable form. Consider the system described by the state model x=Ax; y=Cx; Where	[L1][CO3]	[10 M]
A= $\begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$; C=[1 0]. Design a full order state observer. The desired		
5	[] 1][[]]31	[10M]
-		[10M]
$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t); y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$ Design a full order state observer assuming the desired poles for the observer are located at -10,-10,-15.		[10141]
	Define state observer? What is the need for state observer? Define full order & reduced order observer. What is the necessary condition to be satisfied for design of state observer? Explain the design of pole placement controller using state feedback. Consider a linear system described by the transfer function $\frac{Y(s)}{U(s)} = \frac{10}{s(s+1)(s+2)}$. Design a feedback controller with a state feedback, so that the closed loop poles are placed at -2 , $-1\pm j1$. A single input system is described by the following state equation $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} U$. Design a state feedback controller which will give closed loop poles at $-1\pm j2$, 6. Explain the full order and reduced order observer. As $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} U$; $Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Convert the state model to observable phase variable form. The state model is given by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} U$; $Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Convert the state model is given by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} U$; $Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Convert the state model to observable phase variable form. The state model to controllable phase variable form. Consider the system described by the state model $x=Ax$; $y=Cx$; Where $A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$; $C=[1 & 0]$. Design a full order state observer. The desired eigen values for the observer matrix are $\mu_1 = -5$; $\mu_2 = -5$. What is state observer? Explain about state observer. Consider the system defined by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 & 0 & 1 \\ \dot{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dot{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dot{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\$	$ \begin{aligned} & \begin{array}{ll} Diamed product for the product of th$

R18

UNIT –IV

R18

ANALYSIS OF NON LINEAR SYSTEMS

1	a)	How nonlinearities are introduced in the system.	[L1][CO4]	[2M]
	b)	What are the methods available for the analysis of nonlinear system?	[L1][CO4]	[2M]
	c)	What is dead zone?	[L1][CO4]	[2M]
	d)	What is phase trajectory?	[L1][CO4]	[2M]
	e)	How limit cycles are determined from phase portrait.	[L1][CO4]	[2M]
2		Derive the describing function of back lash nonlinearities.	[L6][CO4]	[10 M]
3		Derive the describing function of saturation nonlinearities.	[L6][CO4]	[10M]
4		Derive the describing function of relay with dead zone.	[L6][CO4]	[10M]
5		Explain the classification of non-linear systems.	[L2][CO4]	[10M]
6		With the help of graphical representations, explain about various common	[L2][CO4]	[10M]
		physical nonlinearities.		
7		Explain the method of isoclines for the construction of phase trajectories.	[L2][CO4]	[10M]
8		What is singular point? Explain various types of singular points.	[L1][CO4]	[10M]
9		A linear second order servo is described by the equation	[L5][CO4]	[10M]
		$e^{+} 2\zeta \omega_n e^{+} \omega_n^2 e^{-} = 0$, Where, $\zeta = 0.15$, $\omega_n = 1$ rad/sec, $e(0) = 1.5$		
		and $\dot{e}(0) = 0$. Determine the singular point construct the phase trajectory		

using method of isoclines.

- **10** a) Explain in detail about various characteristics of non-linear systems. [L2][CO4] [5M]
 - b) Describe various types of singular points and their corresponding phase [L1][CO4] [5M] portraits with rough sketches

UNIT –V STABILITY ANALYSIS

1 2 3	 a) b) c) d) e) 	State Lyapunov instability theorem. State Lyapunov stability theorem. What is the condition for stability in Lyapunov direct method? What are the linear autonomous system? Define positive definiteness of a system. State and prove Lyapunov stability theorem Show that the asymptotically stable condition of a linear system $\dot{x} = Ax$ at origin is: $A^TP + PA = -Q$. Where P&Q are the symmetric positive definite matrices.	[L5][CO5] [L5][CO5] [L1][CO5] [L1][CO5] [L1][CO5] [L5][CO5] [L2][CO5]	[2M] [2M] [2M] [2M] [2M] [10M]
4		Consider the non-linear system: $\dot{x_1} = x_2, \dot{x_2} = -x_1 - x_1^2 x_2$ investigate	[L4][CO5]	[10 M]
5		the stability of this non-linear system around its equilibrium point at origin. Use Krasovskii's theorem to show that the equilibrium state x=0 of the	[L2][CO5]	[10M]
		system described by $\dot{x_1} = -3x_1 + x_2$, $\dot{x_2} = x_1 - x_2 - x_2^3$ is asymptotically stable in the large.		
6	a)	State and prove Lyapunov instability theorem.	[L5][CO5]	[5M]
	b)	Show that the following quadratic form is positive definite V(x) = $8x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 - 4x_1x_3 - 2x_2x_3$	[L1][CO5]	[5 M]
7	a)	Show the graphical representation of stability, asymptotic stability and	[L1][CO5]	[5M]

Course Code: 18EE0223

instability

- b) Define quadratic form and Hermitian form.
- [L1][CO5] **[5M]** Using Lyapunov analysis, determine the stability of the equilibrium state 8 [L5][CO5] [10M] of the system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- Examine the stability of the system described by the following equation [L4][CO5] [10M] 9 by Krasovskii's theorem $\dot{x_1} = -x_1 \dot{x_2} = x_1 - x_2 - x_2^3$
- State and explain about Lyapunov stability for non-linear system. 10 [L2][CO5] [10M]

Preparedby: Mrs. P Nandhini